SQL和NoSQL
网站架构演变
单机MySQL
在古老的年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。
上述架构下,我们来看看数据存储的瓶颈是什么?
- 数据量的总大小一个机器放不下
- 数据的索引(B+ Tree)一个机器的内存放不下
- 访问量(读写混合)一个实例不能承受
Memcached+MySQL+垂直拆分
后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached(缓存)就自然的成为一个非常时尚的技术产品。
Mysql主从读写分离
由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。
分表分库+水平拆分+mysql集群
在Memcached的高速缓存, MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。
同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题,也就在这个时候, MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但性能也不能很好满足互联网的要求,只是在高可靠性上提供了非常大的保证。
MySQL的扩展性瓶颈
MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去, MySQL将变得非常的小
关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。
NoSQL
背景
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在处理web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,出现了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,特别是大数据应用难题。
大数据时代的3V
- 海量Volume
- 多样Variety
- 实时Velocity
互联网需求的3高
- 高并发
- 高可扩
- 高性能
介绍
NoSQL最常见的解释是"non-relational", "Not Only SQL"也被很多人接受。NoSQL仅仅是一个概念,泛指非关系型的数据库,区别于关系数据库,它们不保证关系数据的ACID特性。NoSQL是一项全新的数据库革命性运动,其拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
NoSQL有如下优点:易扩展,NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。无形之间也在架构的层面上带来了可扩展的能力。大数据量,高性能,NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单
分类
键值(Key-Value)存储数据库
这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果数据库管理员(DBA)只对部分值进行查询或更新的时候,Key/value就显得效率低下了。举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB。
文档型数据库(bson格式比较多)
文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值,在处理网页等复杂数据时,文档型数据库比传统键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。
列存储数据库
这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak。
图关系数据库
图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,存放的是关系比如:朋友圈社交网络、广告推荐系统,社交网络,推荐系统等。专注于构建关系图谱,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。如:Neo4J, InfoGrid, Infinite Graph。
不同分类特点对比
分类 | Examples举例 | 典型应用场景 | 数据模型 | 优点 | 缺点 |
---|---|---|---|---|---|
键值(key-value) | Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB | 内容缓存,主要用于处理大量数据的高访问负载,也用于一些日志系统等等。 | Key 指向 Value 的键值对,通常用hash table来实现 | 查找速度快 | 数据无结构化,通常只被当作字符串或者二进制数据 |
列存储数据库 | Cassandra, HBase, Riak | 分布式的文件系统 | 以列簇式存储,将同一列数据存在一起 | 查找速度快,可扩展性强,更容易进行分布式扩展 | 功能相对局限 |
文档型数据库 | CouchDB, MongoDb | Web应用(与Key-Value类似,Value是结构化的,不同的是数据库能够了解Value的内容) | Key-Value对应的键值对,Value为结构化数据 | 数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构 | 查询性能不高,而且缺乏统一的查询语法。 |
图形(Graph)数据库 | Neo4J, InfoGrid, Infinite Graph | 社交网络,推荐系统等。专注于构建关系图谱 | 图结构 | 利用图结构相关算法。比如最短路径寻址,N度关系查找等 | 很多时候需要对整个图做计算才能得出需要的信息,而且这种结构不太好做分布式的集群方案。 |
特点
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache。NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说性能就要高很多。 [2]
灵活的数据模型
NoSQL无须事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是——个噩梦。这点在大数据量的Web 2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便地实现高可用的架构。比如Cassandra、HBase模型,通过复制模型也能实现高可用
RDBMS VS NOSQL
RDBMS
- 高度组织化结构化数据
- 结构化查询语言(SQL)
- 数据和关系都存储在单独的表中
- 数据操纵语言,数据定义语言
- 严格的一致性
- 基础事务
NoSQL
- 代表着不仅仅是SQL
- 没有声明性查询语言
- 没有预定义的模式
- 键-值对存储,列存储,文档存储,图形数据库
- 最终一致性,而非ACID属性
- 非结构化和不可预知的数据
- CAP定理
- 高性能,高可用性和可伸缩性
NoSQL数据库在以下的这几种情况下比较适用:
1、数据模型比较简单;
2、需要灵活性更强的IT系统;
3、对数据库性能要求较高;
4、不需要高度的数据一致性;
5、对于给定key,比较容易映射复杂值的环境。
CAP+BASE
ACID
ACID,是指数据库管理系统(DBMS)在写入或更新资料的过程中,为保证事务(transaction)是正确可靠的,所必须具备的四个特性:原子性(atomicity,或称不可分割性)、一致性(consistency)、隔离性(isolation,又称独立性)、持久性(durability)。
- Atomicity(原子性):一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。
- Consistency(一致性):在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设规则,这包含资料的精确度、串联性以及后续数据库可以自发性地完成预定的工作。
- Isolation(隔离性):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
- Durability(持久性):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
CAP
CAP原则又称CAP定理,指的是在一个分布式系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance)。
- Consistency(一致性):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
- Availability(可用性):保证每个请求不管成功或者失败都有响应。
- Partition tolerance(分区容错性):保证每个请求不管成功或者失败都有响应。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,最多只能同时实现两点,不可能三者兼顾。因此,根据CAP原理将NoSQL数据库分成了满足CA原则、满足CP原则和满足AP原则三大类:
CA-单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP-满足一致性,分区容忍必的系统,通常性能不是特别高。
AP-满足可用性,分区容忍性的系统,通常4可能对一致性要求低一些。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容错性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
C:强一致性 A:高可用性 P:分布式容忍性
CA:传统Oracle数据库
CP:Redis、Mongodb
AP:大多数网站架构的选择
注意:分布式架构的时候必须做出取舍。
一致性与可用性的决择
对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地数据库
事务一致性需求
很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求并不高。允许实现最终一致性。
数据库的写实时性和读实时性需求
对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性,比方说发一条消息之后,过几秒乃至十几秒之后,我的订阅者才看到这条动态是完全可以接受的。
对复杂的SQL查询,特别是多表关联查询的需求
任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查,询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。
BASE就是为了解决关系数据库强一致性引起的问题而引起的可用性降低而提出的解决方案。
BASE其实是下面三个术语的缩写:
基本可用(Basically Available)
软状态(Soft state)
最终一致(Eventually consistent)
它的思想是通过让系统放松对某一时刻数据一致性的要求来换取系统整体伸缩性和性能上改观。为什么这么说呢,缘由就在于大型系统往往由于地域分布和极高性能的要求,不可能采用分布式事务来完成这些指标,要想获得这些指标,我们必须采用另外一种方式来完成,这里BASE就是解决这个问题的办法。
分布式系统
分布式系统(distributed system)
由多台计算机和通信的软件组件通过计算机网络连接(本地网络或广域网)组成。分布式系统是建立在网络之上的软件系统。正是因为软件的特性,所以分布式系统具有高度的内聚性和透明性。因此,网络和分布式系统之间的区别更多的在于高层软件(特别是操作系统),而不是硬件分布式系统可以应用在在不同的平台上如:Pc、工作站、局域网和广域网上等。
简单来讲:
分布式:不同的多台服务器上面部署不同的服务模块(工程),他们之间通过Rpc/Rmi之间通信和调用,对外提供服务和组内协作。
集群:不同的多台服务器上面部署相同的服务模块、通过分布式调度软件进行统一的调度,对外提供服务和访问。